
CO 
in 
a* 
iß 

s 

4 

THE   UNIVERSITY   OF  MICHIGAN 

Technical     Report    33 

CONCOMP 
October 1970 

. 

CAMA (COMPUTER-AIDED MATHEMATICAL ANALYSIS): 

A GENERAL DESCRIPTION 

Louis W. Wolf 

^2.D D C 

f, JAM » »a 

JlibiMiUUUÜi 

Roprodntod  by 

NATIONAL TECHNICAL 
INFORMATION SERVICE 

Sprin<jtiold,  Va      J215I 

Thte doeuB -UW4 P^I 
for INMI 

li 
Mi 

n 



BLANK PAGES 
IN THIS 
DOCUMENT 
WERE NOT 
FILMED 



THE        UNIVERSITY       OF       MICHIGAN 

Memorandum  33 

CAMA   (COMPUTER-AIDED  MATHEMATICAL  ANALYSIS) 

A  GENERAL  DESCRIPTION 

by 

Louis  W.   Wolf 

CONCOMP:     Research  in Conversational  Use of Computers 
ORA Project  07449 

F.   H.   Westervelt,  Director 

supported by: 

ADVANCED RESEARCH PROJECTS AGENCY 
DEPARTMENT OF DEFENSE 
WASHINGTON, D.C. 

CONTRACT NO.  DA-49-083 OSA-3C50 
ARPA ORDER NO. 716 

administered through: 

OFFICE OF RESEARCH ADMINISTRATION  ANN ARBOR 

October 1970 



ABSTRACT 

This paper describes CAMA (Computer-Aided Mathe- 

matical Analysis), which is a system that attempts to 

handle all conceivable mathematical operations, from 

simple numeric procedures to complex algebraic or set- 

theoretic manipulations.  CAMA operates in a timesharing 

environment with a large central computer and a remote 

terminal computer with graphical devices. 

Some of the features of CAMA are: the input and 

output of mathematical symbols in their usual mathemati- 

cal representation; the ability to manipulate these sym- 

bols according to predefined algebraic la*is; the defini- 

tion by the user of other algebraic laws; the definition 

of symbols with user-prescribed meanings; the automatic 

translation of expressions or equations into any of 

several languages; and numerical calculations. The user 

can invoke any of these tasks through the graphical ter- 

minal. 

nx 



TABLE OF CONTENTS 

Abstract ill 

Preface  ix 

1. Summary  1 

2. Introduction  3 

3. Hardware Configuration  9 

4. Central Computer Software   11 

5. Data Structures  12 

6. Task Queue  15 

7. Display File Procedures  16 

8. Drawing Capability  17 

9. Dynamic Loader  18 

10. Translators  19 

11. Algebraic Manipulation  22 

12. Terminal Proceduros   24 

Acknowledgments   26 

References  27 



LIST OF FIGURES 

Figure 1.  Hardware Configuration 10 

Figure 2.  Data Storage Pack Structure 13 

vix 



PREFACE 

The present (September 1970) state of the CAMA sys- 

tem is not exactly as reported herein.  At the end of 

the CONCOMP Project (August 1970) , a number of parts of 

the system wore unfinished or in a non-working condition. 

The interpreter and the macro processor are in a good 

working state, although they still have a number of elusive 

bugs.  The nature of the CAMA system requires that various 

parts of the program get and release space as a matter of 

course.  This practice causes the internal evidence of 

some of the bugs to disappear before we are able to look 

for them.  However, this difficulty does not prevent the 

effective use of the system; it makes it only slightly 

annoying to work with. 

The editor is in and working well, along with a full 

range of other operations which aid the user in construc- 

ting and debugging programs.  All of the data structure 

functions are in good condition, as is the tasking opera- 

tion in the central computer. 

During the evolution of CAMA, all of the programs in 

the terminal computer, including such basic ones as the 

data structure, DF routines, and RAMP, have undergone 

various changes in structure and function, and in their 

calling sequences and return codes.  Consequent""y, a 

number of system components that were functioning 

ix 



previously arc now in a non-functioninq condition.  These 

include the symbol-defining capability, plotting routines, 

the drawing capability, and several other minor components. 

Several parts of the system are not finished or are 

in only a partially working condition. These include the 

symbol manipulating capability and the parsing feature. 

These features can be used by their coders but not by the 

general user at this time. The application of the symbol 

manipulation capability to various problems awaits a more 

usable functioning of the system as a whole. 

Some parts of the system function more slowly than 

is desirable for general use.  This slow action is largely 

due to two factors.  A large number of checking procedures 

are now included in the programs to help detect errors and 

to aid in debugging.  These will be removed as the use 

proves out various parts of the system.  The second most 

important factor is that many operations that could be del- 

egated to dwell-time tasks are at this time done in se- 

quence with other tasks.  As the use of the system picks 

up these task will be reassigned. 

Even though the CAMA system as a whole is not quite 

complete, in its present state it can be used to great 

advantage by the average user.  Those of us who designed 

and built CAMA have used it to build new sections of the 

system and to extend its features, and in so doing have 

found that the general concept and viability of the system 

were clearly demonstrated. 



1.  SUMMARY 

This paper describes CAMA (Computer-Aided Mathe- 

matical Analysis), a system that attempts to handle all 

conceivable mathematical operations, from simple numeric 

procedures to complex algebraic or set-theoretic manipu- 

lations.  CAMA is not a language, although languages are 

certainly involved in it.  Rather, CAMA provides the user-- 

mathematician, engineer, or scientist—having mathematical 

manipulations to perform with a more congenial computing 

environment.  CAMA functions in a timesharing system, with 

a large central computer and a remote terminal computer 

with graphical devices. This paper describes the overall 

objectives and modes of operation of the CAMA system; the 

technical details appear in other papers and reports.  ' 

12-14,22) 

Some of the features of CAMA are:  the inpat and out- 

put of mathematical symbols in their usual mathematical 

representation; the ability to manipulate these symbols 

according to predefined algebraic laws; the definition by 

the user of other algebraic laws; the definition of sym- 

bols with user-prescribed meaning; the automatic transla- 

tion of expressions or equations into any of these tasks 

through the graphical terminal. 

CAMA is efficient in that only those parts which 

are in immediate use need be kept in virtual memory of 



the central computer, while i large file of other parts 

are available on readily accessible and less expensive 

disk files.  Numerical output can be in the form of dis- 

played graphs, or in more usual tabular form.  Hard copy 

of any graph, equation, or symbolic pattern can be ob- 

tained immediately, or at some later time at lower cost. 



2.  INTRODUCTION 

The introduction of large timesharing computers, as 

well as small, fast, inexpensive computers, and graphical 

devices to support them, has made possible many applications 

(1 2) of the computer which were at best difficult in the past.  ' ' 

Any mathematician, engineer, or scientist who has had to 

handle mathematical manipulations, turn these into code, 

debug that code., and plo\.  numerical results, knows what 

tedious chores these are.  With new hardware, however, 

the mathematician or engineer can now communicate with 

the computer in more familiar terms, that is, with the 

same mathematical symbols that he uses normally on a 

sheet of paper. The user can draw symbols, which in 

turn communicate information to the digital computer. 

Procedures for mathematical manipulation of these symbols 

can be invoked and the results transmitted back to the 

user in the form of the symbols he has defined, and not in 

the form of obscure mnemonics.  CAMA was conceived not as 

a language for performing these operations, but as a group 

of aids to assist the mathematician in whatever operations 

he wishes to perform.  These aids include such things as 

graphical input of symbols and expressions, symbol manipu- 

lation, translation of these symbols into numerical pro- 

cesses, and automatic display of the results. 



The designers could not, of course, anticipate all 

the possible uses of CAMA, so many features were pur- 

posely left open to enable users to define their own 

operations.  There are many predefined operations; how- 

ever the knowledgeable user will be able to augment the 

standard operatic ^s  in as much as CAMA is flexible and 

adaptable.  He may modify the commands, modify the data 

storage, modify the syntax of the languages, modify the 

meaning of words, modify the meanings of operators.  He 

may also define new symbols and attach new meanings to 

old symbols. 

A CAMA design objective is ease of use. A novice, 

without any experience in programming, should be able to 

use many of the operations without difficulty.  For ex- 

ample, a novice can sit down at the console and do the 

following operations:  select a group of symbols to use 

in his equations, say an ordinary differential equation; 

construct a differential equation on the display screen, 

def'ne the boundary conditions, and select a method of 

solution, for example, Runge-Kutta.  UP may then select 

the mode of the output:  a tabulation of the results of 

the solution and its derivatives, and/or a graphical dis- 

play of the solution.  He may then cause the differential 

equation to be solved and receive the results.  If he then 

wishes to solve the differential equation by a different 

method, ho selects that method and proceeds as before. 



Provided the user was acquainted with differential equa- 

tions and their solutions, he could learn how to do this 

in approximately 20 minutes.  This same user might also, 

in a few additional minutes, learn how to do algebraic 

manipulations so that he might seek analytic solutions 

to this differential equation. 

Another feature of CAMA is the economy of its oper- 

ations.  Although many of the parts are not optimally 

coded in the sense of maximum speed of operation, all 

parts in CAMA are controlled in such a way that costs 

are minimized.  The charging algorithm on the central 

computer depends upon many factors, two of which are: 

the amount of storage being used, and the length of time 

storage is being used.  In other words, the integral of 

the amount of storage over time determines the major cost 

of computer use.  If the user pauses to think, the CAMA 

system automatically moves all of his operations out on 

to disk files, and keeps only a small portion of his pro- 

gram in the computer to await his next command.  Thus, the 

charges during this thinking time are very small.  They 

might perhaps be as low as $3 for a half-hour's worth of 

thought.  When the user becomes active again, the system 

responds very quickly, bringing his problem back into the 

virtual memory and, for most operations, acting as if it 

were responding immediately to his request for service. 

There are three basic modes of operation of the CAMA 



system:  the immediate mode, the delay mode, and the batch 

mode.  The immediate mode responds at once to the user's 

request.  When he asks for a certain operation, the machine 

returns the results to him as quickly as it can produce 

them.  The delay mode is somewhat different.  If, for ef- 

ficiency, the user wants to stack a series of operations 

and invoke them as a unit, he may specify these opera- 

tions much as he would in ordinary programming, except, 

of course, that he is using graphical input and output. 

When all the operations to be invoked have been stacked, 

the user then causes them to be executed.  He can, if he 

wishes, build into this stack of operations, monitoring 

features which allow him tc interrupt or observe the 

processing.  The third mode of operation is called batch, 

although it is not a batch operation in the ordinary sense. 

It resembles the delay mode, except that the operations 

are executed later, when the user is off the terminal. 

This is desirable in some cases because off-terminal 

'.non-interactive) operations are cheaper than on-terminal 

ones. 

All modes of operation permit the user to keep, if 

he wishes, any intermediate results on the disk files (up 

to the limits of his allocated storage) and use them as 

the basis of further operations.  In mathematical processes 

it is frequently necessary to back up and do something a 

different way.  If the user kept sufficient intermediate 



information, this backing up process is rather easy. 

For example, in solving a differential equation, he 

may find that the method he has chosen is unstable. 

By merely accessing the data storage pack which contains 

the original specification of the differential equation, 

he can seek a more stable method of solutions without 

having to respecify the differential equation.  Further- 

more, by keeping appropriate pieces of infomation on disk 

files, he can resume operations at a later time without 

starting the problem over from the beginning.  This cap- 

ability is highly important in mathemati«   analysis be- 

cause the student often doesn't know where he is going or 

how to get there, but rather is conducting experiments in 

a mathematical language. 

In algebraic manipulation, the user cannot always 

specify everything he wants by simple commands.  To over- 

come this difficulty, CAMA provides many commands derived 

from basic algebraic manipulations such as the commutative 

law, the distributive law, the associative law, and so 

forth.  Furthermore, built upon these primitive operations 

is a hierarchy of more complex operations, each of which 

can be called individually under the control of the user 

at the console.  Or he may define new combinations for 

his own use. 

The algebra or calculus built into the CAMA system 

is not limited to ordinary algebra.  Predefined matrix 



algebra, physical vector algebra, and several others are 

also available.  More complicated algebras can be defined 

and some of the CAMA designers are presently incorporating 

the^e into the system. 

All CAMA operations are under direct user control 

via light-button selection.    Because of the small size 

of the display screen, only a selected group of op»1-^tions 

can be displayed at ony one time.  However, by a simple 

command at the teletype, the user can add or delete from 

the screen light buttons which specify other actions. 

It is relatively easy to define a new operation 

and its associated light button by identifying a parti- 

cular light button with a particular task (a simple com- 

mand does this), and defining that task as a sequence of 

other tasks.  The user can also define his own operations 

either as a combination of existing primitives, or, if he 

is sufficiently knowledgeable, as a combination of primi- 

tives he himself has define^. 



3.  HARDWARE CONFIGURATION 

The University of Michigan Computing Center has an 

IBM 360/67 duplex computer with a four-billion-byte virtual 

memory consisting of about 1.5 million bytes of directly 

addressable core storage and the remainder on an automati- 

cally paged drum (see Figure 1).  Auxiliary storage con- 

sists of disk files of 400-million bvtes, a 400-million- 

byte data cell, and several magnetic tape units.  The 

main computer is accessed on a timesharing basis through 

many ports.  CAMA uses the one known as the Data Concen- 

(4) trator.    Over one hundred other remote data terminals 

can be connected simultaneously via telephone lines to 

the central computer.  Accessible of course are other things 

such as high-speed printers, punches, card-readers, and the 

like. A large-bed Calcomp plotter is also available. 

In a building several blocks away is the terminal 

computer, a Digital Equipment Corporation PDP-8 with two 

103 Dataphones and one 201 Dataphone.  Two teletypes are 

connected to the PDP-8 through two 103 dataphones, and 

the PDP-8 is connected to the central computer through 

the Data Concentrator by the 201 data link.  All of these 

links are dialable facilities through the regular telephone 

lines. Associated with the terminal computer is a disk 

file system, a display with a light pen, a high-speed paper- 

tape reader/punch, a Grafaeon, and a small Calcomp plotter. 

All of these facilities can be used by the CAMA system. 



10 

0) 
u 

•H 



11 

4.  CENTRAL COMPUTER SOFTWARE 

The Michigan Terminal System (MTS) is the operating 

System written by <-he Computing Center staff at the Uni- 

(5) versity of Michigan for the IBM 360/67 computing system. 

This system permits the concurrent handlin9 of a large 

number of jobs either in batch-processing mode or time- 

sharing mode.  MTS is a multiprogramming system that over- 

sees all computational activities, including control of 

access to the computer, managemeit of and operations on 

files, translation of source-language programs, execution 

of object programs, and maintenance of all accounting re- 

cords. 

Usually MTS treats all active users alike, rendering 

service in round-robin fashion.  However, MTS may assign 

priority levels to users when more than one user is com- 

peting for the same computing resource. 

The user communicates with the operating system 

through tht MTS command language, an artificial language 

with a grammar and vocabulary defined by the authors of 

MTS. 

In addition to MTS with its supervisory services, 

the system library contains programs that, for example, 

allow a user to edit a line file, to debug a program using 

symbolic references, to obtain file statistics, to obtain 

a summary of his computer account statistics, and to mount 

magnetic tapes. 



12 

DATA STRUCTURES 

The data structure for CAMA in the central computer 

was designed to meet the objective of adaptability and 

ease of use for non-expert users of the overall system. 

The structure is built around data blocks that are called 

packs.  A pack is subdivided into three regions (see 

Figure 2):  an expandable negative region, a 32-byte zero 

region, and an expandable positive region. 

The positive region contains the data being referenced. 

The zero region contains the information necessary for the 

handling of the packs.  This includes the name of the pack, 

a back-pointer to a list (also stored in a pack) which refer- 

ences this pack, a type which is indicative of the kind of 

information stored in the pack, as will as a number of indi- 

cators which give the size of the pack, length of data 

stored, and length of negative region.  The content of 

the negative region is not specified by the designers but 

is available for knowledgeable users. 

The pack-handling system of CAMA consists of a group 

of simple linked lists which themselves are stored in 

packs and which are referenced by an associative language. 

It has been optimized in the sense that it does not use 

much core storage, and only needed parts of it are loaded 

into active storage.  A disadvantage of the optimization 

is that locating packs may require the searching of long 



13 

S 
3 
EH 
U 
D 
Ct 
e- Ui 
w M 

M I 
u a 
■< Q 
Bi < 

M X 
U U i S 

I 

vo 

fN 

00 

« 
■p 
a 

• xs 
« 
4J IM 
a 0 

TJ u 
u Ü 

•H m 
x: • rH rsi 

• 4J M Q. 
X O CU 
o CP (0 P P 
<n C a CO 3 
a 

u iw ■rH 

>w c 0 b 
0 

u 73 
0 

■p 
• 

(U • • • Q) C n 

9 c T5 C WH 0) w ■H 
0 0) O 01 P n 

c •ri. U ■H M 0 c 
Cn 0 CP .) •H c 

u CJ -P 0) w O 0 
M ^ U) u ■P U) Oi 
a M 4J >; 
u 0) ai 0) •H c u 
CQ > #■* > i-H H • a 
H •. ( ■^ •H ■ 0 u a 

■p 0) ■p IH O & 0) 
0) ■r-( 2 n 0 P 4J «w 

■H tfl tr +J c 0 
>i 0 (0 V TJ h • •H 

J3 a -p c Ü a) h 0 ki 
1 (0 •H ■P 0 a 0) 

■u y-j TJ u-t X) hi p i 
Ä 0 o c •H c "O "g 
CP v»-l -H 0 •H c 3 

■H £ 0 £ a 0 a c 
OJ ■u +J OJ i a 

CP n CP CP ,* i 00 Q 
0) c Qu c TJ u XI ■p c 

JC B > a w tj c (0 •H 
fH hi H j p CQ u a -1 

• • • • 
fH J M 

• • 
a. ä, • • 

2 1 2 D CQ w 
a 

9 



]4 

lists. Other data systems may be linked with packs. The 

negative region provided for in the packs allows the user 

to store in the packs headers and pointers of his own 

choosing so that he may incorporate such systems as 

6 (8 

(10) 

SLIP,(7) L6/
(8) TRAMP,(9) or the Set Theoretic Data 

Structure, 

Data packs may be created or destroyed at the will 

of the user.  They may be expanded or contracted in size 

depending on the quantity of information being stored. 

They may be removed from active storage and stored on 

disk files and retrieved when needed under automatic 

control of the program or under the control of the user. 

When the user pauses in his activity to think or do 

other chores, all the data can be shifted automatically 

to disk files leaving only a very small program in con- 

trol. 

The packs are so structured that the data in them 

may be accessed from any suitably coded subroutine written 

in FORTRAN.  This allows even the least skilled programmer 

to write subprograms and to use his existing subprogram 

written in FORTRAN, MAD/I, ALGOL, or other common languages 

without modification.  Thus, common procedures using arrays 

such as matrix addition, multiplication, etc. can be drawn 

from existing libraries. 



15 

6.  TASK QUEUE 

All CAMA operations in the central computer are 

divided into units referred to as tasks.    The tasks 

may be defined by the user or may be part of the CAMA 

system.  Tasks may be generated by the action of the user 

at the console or by the system when it detects an error 

or when some internal activity needs attention. They 

are stacked on a queue and are processed on a first-on 

first-off basis, unless priorities are requested.  Prior- 

ities are given when data is being transmitted from the 

terminal, when errors occur in processing such as data 

overflow in packs, when information is being processed, 

or when requested by a select group of commands. After 

the priority items are processed, the tasking system re- 

turns to the first-on, first-off basis of processing. 

At the bottom of the queue, a series of tusks con- 

stantly survey data packs and subprograms to see if they 

may be discharged.  Thus, during the dwell times, data 

management may take place, whereas when the user is 

most active his needs are serviced as quickly as possible. 



16 

7.  DISPLAY FILE PROCEDURES 

One part of the CAMA system is a group of procedures 

known as display file (or DF) routines. v   These allow 

the user at the graphics terminal to assemble display 

files in the central computer, transmit them to the ter- 

minal computer, load them into the storage, and control 

the displaying of the display files.  A display file may 

consist of line drawings, descriptions of characters and 

symbols, or calls on other display files.  Thus any pic- 

ture or series of symbols generated in the central com- 

puter can be easily displayed. 

A particular feature of the terminal computer allows 

display files to call other display files as subroutines. 

For example, if a pattern described by a display file is 

to be displayed at more than one location on the display 

screen, only one copy of that pattern need be defined 

with as many references to it as necessary or desired in 

other display files.  In particular, this feature allows 

the user to complement his set of characters and symbols 

with the standard character set which has been defined 

for the display screen of the terminal computer. 

The DF routines include light pen and Grafaeon support, 

These routines enable either the light pen or Grafacon and 

then return data to the user. 



17 

8.  DRAWING CAPABILITY 

Within the CAMA system is an adaptation of a simple 

drafting language developed at the University of Michigan 

known as DRAWL.     This adaptation uses the DF routines 

to produce pictures on the display or hard copies on the 

Calcomp plotters at either the terminal or at a central 

computer facility.  DRAWL can describe any three-dimen- 

sional object by assembling objects into larger objects, 

and then rotate that object or project it onto any plane. 

Perspective views can also be obtained. 

The principal use of DRAWL in CAMA is for the drawing 

of curves which are the results of calculations, producing 

axes for graphs, labeling of graphs, and producing bar 

charts.  At present, there is no provision for the removal 

of hidden lines, but we plan to include this option at a 

later date. 



18 

9.  DYNAMIC LOADER 

The CAMA system presently incorporates approximately 

600 subprograms for the central computer, exclusive of 

those that the user may wish to add, but only a small 

portion of them need be loaded at one time.  Because it 

would be impossible and prohibitively expensive to have 

all hOO in virtual memory at all times, we have provided 

for the dynamic loading or unloading of subprograms at 

(12) the will of the user or under program control.x  '  An 

infrequently used program may be called in from disk 

storage when needed and leleased when not needed.  On 

the other hand, frequently used programs may be loaded 

and kept in virtual memory as long as desired. 



19 

10.  TRANSLATORS 

The interpretation of the symbolic patterns created 

in the terminal computer and stored in the central com- 

puter is a matter for the user to decide.  He may create 

his own translator to interpret patterns, or he may use 

a translation already defined.     Present translations 

include some so simple as to take a line of symbols and 

produce a line of FORTRAN code; others perform numerical 

integrations, or interpret expressions involving matrices 

or other algebraic entities.  Some take an ordinary differ- 

ential equation and produce a program for its solution by 

means of one or more numerical processes. 

The existing translators were constructed with the 

aid of several processors which the knowledgeable user 

may employ to construct his own translators.  These in- 

clude a lexical scanner, a generalized macro facility, 

and a table-driven parser. 

The macro facility allows the user to define a 

"language" of his own in terms of already existing lan- 

guages such as FORTRAN, MAO/I, PL/I, or others.  He may 

in fact, define a new language in terms of another one 

that he has previously defined.  The macro facility allows 

the production of as many lines of output code as are de- 

sired from a single line of input code.  There is a limited 

but most useful context-interpreter in the macro-producer 



20 

which allows modifications of the productions on the 

basis of the modes of variables, counts, operations indi- 

cated, and other parts of the input strings. 

The lexical scanner delimits the syntactic units of 

any line of code and sets up appropriate tables.  The 

scanner, of course, depends on user-defined tables which 

define operators, delimiters, etc. 

The parser (currently a simple precedence parser) 

takes the delimited input strings and produces sets of 

triples.  The precedences are set in a table which can 

be defined by the user if he so desires.  For the several 

predefined languages, precedence tables already are avail- 

able.  The user can change precedences and the external 

representation of operators.  AF an example, he might 

wish to name a variable "*" and denote the multiplication 

operation by M.  Of course, the user may reduce readability 

in his "language," but CAMA does allow him to make such 

choices. 

The triples which are the result of the parsing oper- 

ation are sent through a macro processor, which in turn 

produces code in the base language.  Sometimes saverel 

passes through a parser and macro processor are necessary 

to produce such code. 

The ;,ase language may be a language such as FOPTRAN, 

which requires the execution of a compiler to produce 

machine code.  However, for the immediate mode of operation, 



21 

the base language is a collection of special calls within 

the CAMA system which can, in effect, call any subroutine 

in the library and cauf,e it to operate on any data pack or 

group of data packs.  All predefined operations can be 

called dynamically.  With these special calls as a base 

langauge, operations can be performed immediately as they 

would be in an interpretive language.  This is not a very 

efficient process, however, and is not in general used in 

the delay mode of operation.  Instead, in the delay mode, 

a compiler or an assembler is called in to handle the 

base language translation.  Future productions will be 

in machine code. 

Although still in a formative state, the powerful 

MAD/I compiler at the University of Michigan has made the 

(15) coding of CAMA very much easier.   '  The translators 

and much of the future development depend on thus com- 

piler. 



22 

11.  ALGEBRAIC MANIPULATION 

The graphical, interactive nature of CAMA makes 

algebraic manipulations more practical than in older 

systems. There is distinct advantage in 

being able to see mathematical symbols as they usually 

appear in the mathematical literature as opposed to see- 

ing them as rather obscure mnenomics.  As an idea is 

(19) easily lost after a delay of 15 seconds,    the immedi- 

ate viewing of  the results of an algebraic manipulation 

is far juperior. 

At present, the CAMA system has only a limited alge- 

braic capability, but is growing as it is used.  All the 

algebraic operations are based on a group of primitive 

operations. These include identifying an entity, moving 

an entity, substituting an expression, applying the asso- 

ciative law of addition or multiplication or the inverse, 

applying the commutative law of addition or multiplication, 

applying the distributive law, and the combining of like 

adjacent terms.  Upon these primitive operations more com- 

plex operations are built.  For example, the gathering of 

like terms from a long expression is accomplished by identi- 

fying one term as an entity, searching for identical entities, 

moving the entity to an adjacent position, and combining 

terms.  The inverse operation is also available and is 

sonctLmes useful. 



23 

Many operations are currently defined for one-dimen- 

sional expressions, that is, expressions in which only 

the X positions of the symbols are significant.  However, 

a limited but growing set of two-dimensional operations 

is also available.  There are many problems associated 

with the ambiguous interpretation of two-dimensional ex- 

pressions which have not been entirely resolved.  Many 

of these problems are easily bypassed, however, because 

the user can watch the progre' 3 of the manipulation and 

interject the correct interpretation if the programmed 

interpretation is incorrect. 

Inasmuch as the algebraic operations are defined in 

terms of primitives, and since any user can include or 

delete any operation at will, the ultimate «..apability in 

terms of different algebras is great.  For example, it 

was relatively easy to include many operations of matrix 

algebra and calculus and physical vector algebra and cal- 

culus in this system.  Tensor algebra and calculus is now 

being included. Although we have not pursued it to any 

extent, it seems possible to define algebras to manipulate 

physical entities such as machine parts, structural elements, 

or picture elements. 



24 

12.  TERMINAL PROCEDURES 

All the activities in the terminal computer are im- 

bedded in an operating system known as RAMP. This 

is a multiprogramming system which takes care of all such 

services as processing interrupts, transmitting data to 

and fron, the data phones, structuring display files, inter- 

preting light-pen hits and Grafacon interrupts.  It handles 

tha storage and retrieval of information from the lo^al 

disk files, prepares data for the local Calcomp plotter, 

and in general handles all the management of buffers and 

subprograms within the terminal computer. 

Several procedures for the terminal computer are 

(22) specifically designed for CAMA.     One such procedure 

allows a user to define any symbols he chooses and store 

them for future use in the central computer's data packs. 

Thus he can create any of the commonly used mathematical 

symbols such as partial derivative symbols, integral sym- 

bols, script letters, Greek letters, or, for that matter, 

any pattern.  Associated with each symbol are a number of 

attributes, including a primary reference point which 

identifies the X and Y coordinates of the symbol when 

used in an expression, a name, and type.  The attributes 

also include a group of secondary reference points which 

can serve a number of roles includina points of attach- 

ment for other symbols and for connectors in such things 



25 

as electrical circuits.  At present, approximately two- 

hundred commonly used symbols have been defined and stored 

in appropriate packs in the central computer. 

The user may select a subset of symbols from the set 

of predefined symbols and/or add to that set any that he 

defines himself.  This set becomes a menu from wh-.ch he 

can construct the mathematical expressions or other sym- 

bolic patterns.  This procedure allows the user to select 

the symbols by a light pen, or through the Grafaeon, and 

locate them in whatever pattern he feels is meaningful. 

This procedure allows him to rnove the symbols, edit the 

pattern, or add and delete symbols.  When the pattern 

satisfies him, he transmits it to the central computer. 

The information transmitted includes the x and y coordin- 

ates of the primary reference point of the symbols as 

well as the name, type, size, and other pertinent attributes, 

This information it  stored in a pack named by the user. 

Then, by the same procedure, he may construct other ex- 

pressions or patterns until he has a complete set for 

his purposes. 



26 

ACKNOWLEDGMENTS 

The author wishes to give special thanks to Mr. W.S. 

Gerstenberger for his continuing assistance and support, 

without which this work would have been impossible, and 

to Mssrs. Robert W. Taylor and Richard Johnston for their 

most  significant contributions to the CAMA system.  Mrs. 

Jane Bisgrove, Mrs. Suzanne D. Goodrich, and Mr. Larry 

Juiyk, although not listed as authors, deserve most of 

the credit for the id^as and their implementation de-- 

scribed in this report.  The author also wishes to thank 

the many people at the University's Computing Center and 

at the Concomp Project who gave invaluable assistance. 



27 

REFERENCES 

1. Culler, G.J., Fried, B.D., "The TRW Two-Station On- 
Line Scientific Computer:  General Description," 
Computer Augmentation of Human Reasoning, Spartan 
Books, Washington, D.C., 1965. 

2. Kierer, Melvin, and May, Jack, "Two-Dimensional 
Programming," Proceedings 1965 FJCC, p. 63. 

3. Cocanower, Alfred B. , The DF Routines User's Guide, 
Memorandum 23, Concomp Project, University of 
Michigan, Ann Arbor, May 1969. 

4. Mills, D.L., The Data Concentrator, Technical Report 
8, Concomp Project, University of Michigan, Ann 
Arbor, May 1968, 113 pp. 

5. MTS;  Michigan Terminal System, 2nd ed.. Computing 
Center, University of Michigan, Ann Arbor, December 
1967, 2 vols. 

6. Julyk, Larry, and Wolf, Louis W., The CAMA Data 
Structure, Memorandum 29, Concomp Project, University 
of Michigan, Ann Arbor, August 1970. 

7. Weizenbaum, J., "Symmetrical List Processor," 
Communications ACM, September 1963, pp. 524-536. 

8. Knowlton, K.C., "A Programmer's Description of L ," 
Communications ACM, August 1966, pp. 616-T25. 

9. Ash, W., and Sibley, E.H., TRAMP; A Relational 
Memory with an Associative Base, Technical Report 
5, Concomp Project, University of Michigan, 
Ann Arbor, May 1968, 80 pp. 

10. Childs, D.L., Description of a Set-Theoretic Data 
Structure, Technical Report 3, Concomp Project, 
University of Michigan, Ann Arbor, March 1968, 
27 pp. 

11. Herzog, B., DRAWL 70:  A Computer Graphics Language, 
Technical Report'TO, Concomp Project, University 
of Michigan, Ann Arbor, August 1970. 

12. Julyk, L.J., The CAMA Operating System, Memorandum 30, 
Concomp Project, University of Michigan, Ann Arbor, 
August 1970. 



2ü 

13. Julyk, L.J., Dingwall T., and Wolf, L.W., TheCAMA 
Macro Processor, Memorandum 35, Concomp Project, 
University of Michigan, Ann Arbor, August 1970. 

14. Dingwall, T. , JulyR, L.J., and Wolf, L.W., The CAMA 
1nterpreter, Memorandum 36, Concomp Project, 
University of Michigan, Ann Arbor, August 1970. 

15. üoias, U., Srodawa, H., and Springer, A., The MAD/I 
Manuell, Technical Report 32, Concomp Project, 
University of Michigan, Ann Arbor, August 1970, 
in a pp. 

16. Bond, E., et al. "FORMAC - An Experimental FORmula 
MAnipulation Compiler," Proceedings of the ACM 
Nationaj Conference, August iSTT?. 

17. Eng« Iman, C, "MATHiAB, A Progj am for On-Line Machine 
Assistance i.i Symbolic Computations," Proceedings 
FJCC 196 - , pp. 413-421. 

ib.  Sibley, E.H., The Engineering Ass.: stant;  Des ign of 
A Symbol .^anrpülätTo^'sVstem / "Tecifnical Report 2V 
Concomp Project, University of Michigan, Ann Arbo., 
August 1(>67, 33 pp. 

19. Miller, Robert B., "Response Time in Man-Computer 
Conversational Transactions," Proceedings FJCC 
196 8, p. <!67. 

20. Mills, D., RAMP: A PDP-a Multiprogramming System for 
Real-Time Device Control, Concomp Project, University 
of Michigan, Ann Arbor,"May 1967, 24 pp. 

21. Gerstcnberger, W.S., and Taylor, R.W., Graphics RrtMP 
User's Guide, Memorandum 34, Conconp Project, 
University of Michigan, Ann Arbor, August 1970. 

2.2.     Goodrich, Mrs. S., CAMA:  De fine-Problem Command, 
Memorandum 28, Concomp Project, University of 
Michigan, Ann Arbor, June 1970, 31 pp. 



UNCLASSIFIED 
^!> 

S«curlty Cl«isific«tion 

DOCUMENT CONTROL DATA - R & C 

1.    OnlCINATINC ACTIVITY (Corpormf author) 

UNIVERSITY OF MICHIGAN 
CONCOMP PROJECT 

} i<    -»^oo^r seCLH.TY CL ASS.f ICATIOK 

■   Unclassified  
I 2u.   6r)OUP 

J.    REPORT TITLE 

CAMA (COMPUTER-AIDED MATHEMATICAL ANALYSIS): A GENERAL DESCRIPTION 

*.   DESCRIPTIVE NOTtS 'Typ* u/ report unJ im lumiv* Jmesi 

Memorandum 33 
i.   AUTHOR'S) (Firii nmm», middla mil,ml, Immi nmm») 

LOUIS  W.   WOLF 

8.    REPORT DATE 

i October  1970 
|7..   TOTA,.   HO.  OF  ^AOh'S 

I        28 
,    '-•   \i.   Of   St r J 

I        22 
8*. CONTRACT OR GRANT NG. 

DA-49-083  OSA-3050 
»■ PROJECT NO. 

r,u. ORIGINATOR'S REPORT NuViHt N   . 

Memorandum  33 

96. OTHEfr REPORT NOIS) (Any nlher numbmra Ihml mmy fir a«.w^n«tc/ 
• thia re sorry 

10. DISTRIBUTION STATEMENT 

Qualified requesters may obtain copies of this report from DDC. 

11.   SUPPLEMENTARY  NOTES 12.    SPONSORING "'II.ITARY ACTIVITY 

Advanced Research Projects  Agency 

II.   ABSTRACT 

This paper describes CAMA (Computer-Aided Mathematical Analysis), 
which is a system that attempts to handle all conceiva) le mathematical 
operations, from simple numeric procedures to complex algebraic or 
set-theoretic manipulations. CAMA operates in a timesharing environ- 
ment with a large central computer and a remote terminal computer with 
graphical devices. 

Some of the features of CAMA are:  the input and outout cf 
mathematical symbols in their usual mathematical representation; the 
ability to manipulate these symbols according to predefined algebraic 
laws; the definition by the user of other algebraic laws; the defini- 
tion of symbols with user-prescribed meanings; the automatic transla- 
tion of expressions or equations into any of several languages; and 
numerical calculations.  The user can invoke any of these tasks through 
the graphical terminal. 

DO FORM ..1473 
Security Classification 



S«cuf1ly C.ii>Mfi>.ai 

14 

KEY  a<l«OS 
LINK  A LINK LINK C 

ROLC WT moLt WT no^ «T 

graphical languages 
symbol manipulation 
data structure 
string handling 

Secun'v  71ii"s fication 


